N89-15571

Using Automatic Programming for Simulating
Reliability Network Models

Fan T. Tseng
Bernard J. Schroer
University of Alabama in Huntsville
Huntsville, Alabama, USA 35899

S. X. Zhang
Northwestern Polytechnical University
Xian, Shaanxi, China

John W. Wolfsberger
NASA Marshall Space Flight Center
Marshall Space Flight Center, Alabama, USA 35812

ABSTRACT

This paper presents the development of an automatic
programming system for assisting modelers of reliability net-
works define problems and then automatically generate the
corresponding code in the target simulation language GPSS/PC.

INTRODUCTION

There has always been a desire of software developers to
automate more and more of the computer programming process. The
goal of these developers has been to have a system that can carry
on a natural language dialogue with the user in defining his
problem and then to automatically generate the appropriate com-
puter code. The term automatic programming (AP) has been defined
as an application of artificial intelligence (AI) in automating
some aspects of the computer programming process (Barr and
Feigenbaum 1982). This automation is generally accomplished by
developing another program, an AP system, that raises the level
of specifying computer program instructions. In other words, an
AP system is a program that helps programmers write programs.

An AP system should improve the overall environment for
defining and writing the program (Brazier and Shannon 1987). As
a result of this 1improved environment, there should be a reduc-
tion in the amount of detail that the programmer needs to know.
Quite possibly, the user could even do his own programming with
the help of an AP system. Also, this improved environment should
result in a more natural way for the user to define his problem
that closely resembles the user's way of thinking and looking at
problems.

RESEARCH GOAL

The goal of the research presented in this paper is to deve-
lop an AP system to assist the modeler of reliability networks

153

define problems, and to then automatically generate the program
code in the target simulation language GPSS/PC. The AP system is
called Automatic Network Programming System (ANPS).

The domain of problems that can be solved by ANPS include
prelaunch activities of space vehicles, operation of ground sup-
port equipment, space vehicle turn around activities, space
transportation systems and operational plans, and hardware
system with multiple subsystems. The ANPS system requires that
the problem be defined by:

° A network of activities with starting and stopping
events.

° Activities with either fixed or continuous times.

° Actijvity failures and repairs (mean times to failure and
repair).

® QOperational dependencies between activities.
PREVIOUS RESEARCH

Synder et al. (1967) developed a simulation model of the
Saturn V prelaunch activities beginning at T-24 hours and con-
tinuing through T-0 hours, or lift-off. This model was used to
predict Taunch vehicle availability (LVA). LVA was defined as
the probability of Taunching the spacecraft within a given launch
window. A second objective of the model was to identify loca-
tions in the countdown for placing holds and to determine the
length of these holds.

The Synder model consisted of over 1100 vehicle subsystems
and 400 ground support subsystems. A detailed time 1line was
developed showing the interrelationships of these subsystems. 1In
addition to the time line, the model input included operational
data, reliability data, and maintenance data. The model was
written in GPSS-II and ran on an IBM 360 computer.

The original Synder model was expanded to include multiple
launch windows and the operational sequence when a launch window
was missed and the spacecraft had to be recycled to the next
Taunch window (Schroer 1969). The model was used to predict the
probability of launching a spacecraft within a given set of back-
to-back Tlaunch windows. A second objective was to predict the
probability of launching in a subsequent window, given a window
had been missed and a recycle sequence and a possible hold had to
be executed before resuming the countdown,.

The expanded model included two countdown sequences. The
first sequence was the main countdown sequence identical to the
Synder model. The second sequence was the recycle sequence that
consisted of a number of backout sequences containing those
evgp;: that were required to return the countdown to some

preceding point. The recycle sequence also consisted of a
recycle hold containing those activities that were required to
sustain the vehicle status at a particular time in the countdown.
The model was written in GPSS-II, contained 2300 blocks, several

Fortran help routines and ran on the IBM 360 computer.

A goal of the ANPS system is to be able to model these types
of applications more quickly and accurately than previously done
using conventional simulation techniques.

ANPS SYSTEM

Figure 1 gives an overview of the ANPS system. The ANPS
system is designed using the elements of automatic programming as
its foundation. The three AP elements in ANPS are; an interac-
tive user dialogue interface, a library of software modules, and
an automatic simulation code generator. In Figure 1, the tradi-
tional programming task of flow charting has been replaced by the
interactive user dialogue interface and the problem specifica-
tion. Likewise, the program writing task in Figure 1 has been
replaced by the automatic code generator and the library of soft-
ware macros. The ANPS system is written in Turbo Prolog (Borland
1986) on an IBM PC class of personal computer. The system con-
tains 1218 lines of code and 86 subroutines. The simulation code
generated by ANPS is GPSS/PC (Minuteman 1986).

User Library of

software
macros

]

Interactive
user interface

ZaN

L

problem
specification

Automatic
code generator

il

Vi

Problem
modifications

GPSS/PC
simulation
program

GPSS/PC
stmulation
system

User defines
experimental
frame

!

¢

Simulation
resuits

Figure 1. ANPS system overview

155

Interactive User Dialogue Interface

There are three commonly used AP user interfaces. These are
a natural language interface, a graphical user interface, and an
interactive dialogue interface. Several natural language inter-
face developments are Heidorn (1974) and Ford and Schroer (1987).
An example of a graphical interface development is Khoshnevis and
Chen (1986). Several interactive dialogue interfaces are Haddock
and Davis (1985), Brazier and Shannon (1987), and Murray and
Sheppard (1988).

The ANPS system wuses an interactive dialogue interface.
This interface is probably the most common and easiest to develop
interface. Using this interface, the user, or modeler, enters
into a dialogue with the ANPS system to define the problem speci-
fication, or model.

Library of Software Modules

The robustness of an AP system is dependent on the diversity
and completeness of its library of software modules.
Furthermore, this library is generally domain specific. When new
modules or subroutines are needed, expert simulation programmers
are needed to write the simulation code and to assure the proper
interface.

Since the ANPS system is domain specific to system reliabi-
lity networks, the number of needed software modules is minimal.
At this point of development, ANPS consists of the following four
modules:

° Fixed activity operation function

° Variable activity operation function
° Activity failure function

°© Activity interrupt function

These modules were selected based on a detailed evaluation
of the two previously discussed models by Synder (1967) and
Schroer (1969). Interestingly, several of these previously deve-
loped modules were written as Fortran HELP routines using the old
GPSS-11.

The fixed activity operation function (VENT _A) simulates the
operation of each fixed time activity and its time to failure.
If the activity fails during its operation, the transaction is
forwarded to the activity failure function (FAIL).

The variable activity operation function (VENT B) simulates
the operation of each variable time activity and its time to
failure. This activity is not completed until all other related
actfggties are completed. For example, system power is a

variable time function that will be on wuntil all activities
requiring power are completed. If the activity fails, the tran-
saction is forwarded to the activity failure function (FAIL).

The activity failure function (FAIL) simulates the failure
of an activity as indicated by functions VENT_A and VENT_B. When
an activity fails, all the dependent activities enter a hold
state. The function then simu-lates the time to repair the acti-
vity. If another activity fails during the delay of a dependent
activity and the dependent activity is dependent on the first
failed activity, the additional time to repair, if any, is added
to the delay of the dependent activity. The function assumes
that a dependent activity that has been delayed cannot fail
during the delay. The activity interrupt function XACT_DELAY
contains the logic to add any additional time to an activity on
hold if another activity fails during the hold and the held acti-
vity is dependent on the failed activity.

Figure 2 is a Tlisting of the GPSS code for the fixed acti-
vity function VENT_A. Note that the subroutine makes extensive
use of indirect addressing. The system also contains a Tlarge
number of matrix savevalues for transferring data between the
subroutines and the main program. Initially, all the input data
from the problem specification are entered into these matrix
savevalues.

Automatic Simulation Code Generator

The output from the interactive dialogue interface, or the
problem specification, is then used as input to the code genera-
tor program which automatically writes the program code in the
target simulation 1language GPSS. The system creates the main
program that includes the appropriate calls to the selected
library macros.

ACTIVITY TIME SIMULATION GENERATOR

VENT & SEIZE P
ASSIGEN ETIME, MX$WORE TIME (F3, 1)

1410 BACKT ASSIGN MTTF, MX$F _TIME (F35, 1)
1420 TEST L. FEMTTF, FSETIME, MOFATL
1470 ADVANCE F&MTTE
1440 ASSIEN FW, B3
1450 TRANSFER SER, FATL, RTRENI
14460 ASSIGEN REST TIME,V$TIMED
1470 TIMEZ FUARIABLE FEETIME-F$MTTE
1480 ASSIGEN ETIME, F$REST TIME
1490 TRANGFER CEACES
1500 NOFAIL ADVANCE F$ETIME
1510 RELEASE e
1520 TRANSFER FoRTRNG, 1

Figure 2. GPSS listing for function YENT_A
157

SAMPLE PROBLEM

Figure 3 is a time line for a typical network consisting of
nine fixed activities and two variable activities. Figure 4 is
the time 1ine redrawn in the form of a network diagram. Activity
12 is a dummy activity with the time equal to zero.

Time
—

0 50 100 150 200

Figure 3. Sample problem time line

Figure 4. Sample problem reliability network

158

Table I gives the time parameters for the activities. These
parameters include activity duration, time to failure and time to

repair.

Activities ACT]1 and ACT2 have variable times; therefore,

the activities will operate during the entire duration of the

system.

Table II gives the operational dependencies between the

activities. For example, a failure of activity ACT1l will cause a
stopping of activities ACT3, ACT4, and ACT5. Likewise, a failure
of activity ACT9 will also stop activity ACTS.

Table I. Activity Time Parameters

Activity Duration Time to Failure Time to Repair
ACT1 Variable E(200) N(20,4)
ACT2 Variable E(200) N(20,4)
ACT3 100 E(120) N(10,2)
ACT4 40 E(60) N(5,1)
ACT5 60 E(80) N(5,1)
ACT6 50 E(60) N(5,1)
ACT7 30 E(100) N(10,2)
ACT8 60 E(100) N(10,2)
ACT9 60 E(50) N(5,1)
ACT10 40 E(60) N(5,1)
ACT11 80 E(100) N(10,2)
ACT12 Dummy 0 0

Table II. Operational Dependencies Between Activities

Activity

J Dependent Activities
ACT ACT2 AC ACT4 ACTS5 ACT6 ACT ACT8 ACT9 ACT ACT ACT12

ACT1
ACT2
ACT3
ACT4
ACTS
ACT6
ACT7
ACT8
ACT9
ACT10
ACT11
ACT12

X X X X

159

Figure 5 is a partial listing of the interactive user dialo-

gue for defining activity ACT3.

at node 3. The activity type

time to
of 120,

distribution with
Activity ACT6 is dependent on ACT3.

Figure 6 1is

failure follows
the time to

a mean

a partial

of 10

is fixed,
an exponential
repair the activity follows

and a standard deviation of 2.

ACT3 starts at node 1 and ends

the duration is 100, the

distribution with a mean

listing of the GPSS main
TRANSFER and

Note that the code consists of a number of SPLIT,

ASSEMBLE

blocks

that define the

network.

the normal

program.

The TRANSFER blocks

route the transactions to the appropriate fixed or variable acti-
vity operation subroutines.

Name for

1. Number of
2. Activity
Activity
Activity
Duration

Starting
Ending
MTTF

MTTR

NMumber of dependent activities

GFSS Frogram

activities
attributes:

name.

type (fixed/variable)
distribution type
mean time

node number

rnode number
distribution type
mean time

distribution type
mean time
standard deviation

EXAMF. 1
12

$ACTZ
FIXED
CONSTANT
100

1

EXPONENTIAL
120

NOFRMAL
10
-

1

Name of dependent activity 1:$ACTé6

Figure 5. Partial listing of interactive user dislogue

160

1945
1950
1985
1960
1965
1970

2000
2001

2002
2003
2004
2005
2006
2007
2008
2009
2010
2011

2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2024
2023
2026
2027
207

2082
2083
2088
2086
2088
2089
2091
2092

2094
2095
2096
2097

GENERATE
MORE SPLIT

GATE LS

LOGIC R

TRANSFER
MM MARK

EV1 ADVANCE
TRANSFER
EVZ ASSEMBLE
TRANSFER
EV3 ASSEMBLE
TRANSFER
EV4 ASSEMBLE
LOGIC S
EEVA ASSEMBLE
TRANSFER
EVS ASSEMBLE
LOGIC S
EEVS ASSEMBLE
TRANSFER
EVé ADVANCE
TRANSFER
EV7 ADVANCE
TRANSFER
EVS ADVANCE
TRANSFER
Al ASSIGN
SPLIT
ASSIGN
LOGIC R
TRANSFER
TRANSFER

A2 AQC T R

TRANSFER
ALO ASSIGN
ASSIGN
TRANSFER
TRANSFER
ALl ASSIGN
ASSIGN
TRANSFER
TRANSFER

END1 TABULATE

SYSTIME TABLE
LOGIC S
TERMINATE

339l

1,MM
SWITCH_MORE
SWITCH_MORE
+ MORE
SYSTIME

SWITCH_END1
2

,A12

1
SWITCH_END2
2

LEND1

L A7
,A9

LAl
2, $ACT1

1,A2

3,1

SWITCH_END1

SBR, VENT_B, RTRN2
,EEV4

2.$ACT2

2,$ACT10
3,10

SBR, VENT_A, RTRNZ
,EvE

2,$ACT11
3,11
SBR, VENT_A, RTRN2
LEV4

SYSTIME
MP$SYSTIME, 0, 50,50
SWITCH_MORE

1

Figure 6. Partial GPSS listing of main program

CONCLUSIONS

The ANPS system is currently in limited operation on an IBM
PC microcomputer. A number of relatively small network problems
have been solved using the system. Given the success in modeling
these small networks, it appears that the ANPS system can readily
model the two large Saturn V prelaunch models by Synder (1967)
and Schroer (1969). Based on this initial testing and eva-
luation, the following comments can be made:

° The interactive user dialogue provides for a formal and
structured procedure for acquiring information on the
network being modeled.

° The interactive user dialogue expedites the definition of
the problem specification and assures a complete and
detailed definition of the problem specification.

° The automatic code generator results in structured simu-
lation code that is easy to read, trace and modify.

° The overall clarity of the simulation code 1is greatly
improved.

° The ANPS system is ideal for rapid prototyping and can
produce simulation code that is syntax error free.

° The ANPS system reduces the knowledge Tlevel required by
the modeler of the simulation language.

The ANPS system also has several disadvantages. These
disadvantages include:

° The system is domain specific and limited by the robust-
ness of its library of macros.

° The GPSS code generated by ANPS probably is longer, and
consequently requires more memory and takes Tlonger to
execute, than a nonstructured equivalent program.

A second version of ANPS 1is currently under development on
an Apple Mac II using HyperCard. This version uses an interac-
tive graphical interface rather than the interactive user dialo-
gue. With this version it will be possible to compare the
different interface approaches to defining the problem specifica-
tion, the use of Turbo Prolog versus HyperCard, and the PC and
Mac II platforms.

ACKNOWLEDGEMENTS

This research was funded in part by grant NAG8-641 from the
NASA Marshall Space Flight Center and contract ADECA-UAH-9001
from the Science, Technology, and Energy Division of the Alabama
Department of Economic and Community Affairs. 161

REFERENCES

Barr, A. and E. A. Feigenbaum, 1982, The Handbook of Artificial
Intelligence, Vol. 2, W. Kaufman, Inc., CA.

Brazier, M. K. and R. E. Shannon. 1987. "Automatic Programming
of AGVS Simulation Models," 1987 Winter Simulation
Conference, Atlanta, GA, (December) pp. 703 - 708.

Ford, D. R. and B. J. Schroer. 1987. "An Expert Manufacturing
Simulation System."™ Simulation, Vol. 48, No. 5, (May) pp.
193-200. .

GPSS/PC Reference Manual, 1986, Minuteman Software, Stow, MA.

Haddock, J. and R. P. Davis. 1985. "Building a Simulation
Generator for Manufacturing Cell Design and Control."
Annual International Industrial Engineering Spring
Conference Proceedings, Los Angeles, CA, (May) pp. 237-244,.

Heidorn, G. E. 1974. "English as a Very High Level Language for
Simulation Programming." SIGPLAN Notices, Vol. 9, No. 4,
pp. 91-100.

Khoshnevis, B. and A. P. Chen. 1986. "An Expert Simulation
Model Builder." Intelligent Simulation Environment, Society
for Computer Simulation, Vol. 17, No. 1, pp. 129-132.

Murray, K. J. and S. V. Sheppard. 1988. "Knowledge-based
Simulation Model Specification,” Simulation, Vol. 50, No. 3,
(March) pp. 112-119.

Schroer, B. J. =~ 1969. “Saturn V Prelaunch Systems Simulation
Model for a Launch Opportunity Containing Multiple Launch
Windows," Third Conference on Applications of Simulation,
Los Angeles, (December) pp. 503-511.

Synder, J. E., E. R. Bennich and Y. H. Lindsey. 1967.
"Implementation of Advanced Simulation Techniques for
Predicting the Saturn V Launch Vehicle System Behavior,"
Journal of Spacecraft and Rockets, Vol. 4, No. 8, pp.
998-1002.

Synder, J. E. R. Bennich and Y. H. Lindsey. 1967.
"Implementation of Advanced Simulation Techniques for
Predicting the Saturn V Launch Vehicle System Behavior,"
AIAA 5th Aerospace Sciences Meeting, Paper 67-205, New York,
January 1967.

Turbo Prolog 2.0 Reference Guide. 1986. Borland International,
Scotts Valley, CA.

162

